A study of the shaping of signal pulse under the condition of a synchronous pulse pump 同步脈沖泵浦下信號脈沖整形的研究
Synchronous pulse generating circuit : got by back panel output 1pps 、 1ppm 、 1pph synchronous pulse signal . pulse is photoelectric isolation static idle contact form output 同步脈沖發(fā)生電路:通過后面板輸出秒( 1pps ) 、分( 1ppm ) 、時( 1pph )同步脈沖信號。脈沖是光電隔離的靜態(tài)空接點形式輸出。
Pcnn is a new type of network and is called the third generation artificial neural network . it is a simplified model built through the simulation of the outbursts of synchronous pulses in the visual layer of a cat ' s cerebra Pcnn是近年來提出的一種新型網(wǎng)絡,被稱為第三代人工神經(jīng)網(wǎng)絡,它是通過模擬貓的大腦視覺皮層中同步脈沖發(fā)放行為而建立起來的一個簡化模型。
Firstly , the paper , combining the characteristic of synchronous pulse bursts and inhibition with the modified pcnn model , presents a way of finding the foveation points in the images adaptively and effectively , and simulates the human vision system . secondly , pcnn is extended to pcnns , based on the properties of information couple and transmission , an algorithm that is used to fuse images of the same target got by several sensors to an image is presented to simulate the human vision system . thirdly , combining the properties of synchronous pulse bursts , capture , and transmission and competition of waves , the paper presents two ways of classification , one is an algorithm based on the properties of neuron to capture and inhibit to classify the data taking on any complex unlinear distribution robustly , the other is based on the restricted distance and modified of the former to remove the influence of inferior samples in classification ; fin ally , based on the accumulative difference pictures , and the forming and transmission of pcnn wave , selecting and controlling the direction of autowave by connecting the neighbouring neurons selectively , the paper presents a way to simulate the tracks of moving object and detect the moving direction 首先結(jié)合pcnn的同步脈沖發(fā)放和側(cè)抑制特性,提出了基于改進型pcnn的圖像凹點檢測算法,該算法是一種自適應而有效的圖像凹點檢測方法,并且較好地仿真了人類視覺系統(tǒng);然后,結(jié)合信息傳遞和信息耦合特性,將pcnn擴展成pcnns ( pcnn網(wǎng)絡群) ,提出了一種基于pcnns的圖像融合算法,能夠?qū)⒍鄠€傳感器獲取的同一目標的圖像信息融合到一幅圖像中,有效模擬了人類視覺系統(tǒng);另外,結(jié)合pcnn的同步脈沖發(fā)放特性、捕獲特性和波的傳播競爭特性,開拓地將pcnn用于模式分類中,提出了基于耦合神經(jīng)元點火捕獲抑制特性的分類方法和改進的約束距離下的pcnn分類方法,前者可實現(xiàn)對樣本空間中任意復雜分布訓練樣本的穩(wěn)健非線性分類,而后者能夠消除訓練樣本中刺點對分類的影響;最后,結(jié)合累積差分圖像思想、 pcnn波的形成與傳播特性,通過各神經(jīng)元之間連接取向來選擇與控制自動波的流向,將pcnn用于運動視覺分析中的運動軌跡模擬及運動方向檢測。